Hadwiger’s conjecture for squares of 2-trees
نویسندگان
چکیده
منابع مشابه
on huppert's conjecture for f_4(2)
let $g$ be a finite group and let $text{cd}(g)$ be the set of all complex irreducible character degrees of $g$. b. huppert conjectured that if $h$ is a finite nonabelian simple group such that $text{cd}(g) =text{cd}(h)$, then $gcong h times a$, where $a$ is an abelian group. in this paper, we verify the conjecture for ${f_4(2)}.$
متن کاملCombinatorics of least-squares trees.
A recurring theme in the least-squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least-squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor...
متن کاملGraceful Tree Conjecture for Infinite Trees
One of the most famous open problems in graph theory is the Graceful Tree Conjecture, which states that every finite tree has a graceful labeling. In this paper, we define graceful labelings for countably infinite graphs, and state and verify a Graceful Tree Conjecture for countably infinite trees.
متن کاملThe self-minor conjecture for infinite trees
We prove Seymour’s self-minor conjecture for infinite trees.
متن کاملon huppert's conjecture for $f_4(2)$
let $g$ be a finite group and let $text{cd}(g)$ be the set of all complex irreducible character degrees of $g$. b. huppert conjectured that if $h$ is a finite nonabelian simple group such that $text{cd}(g) =text{cd}(h)$, then $gcong h times a$, where $a$ is an abelian group. in this paper, we verify the conjecture for ${f_4(2)}.$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2019
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2018.10.003