Hadwiger’s conjecture for squares of 2-trees

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on huppert's conjecture for f_4(2)

let $g$ be a finite group and let $text{cd}(g)$ be the set of all‎ ‎complex irreducible character degrees of $g$‎. ‎b‎. ‎huppert conjectured‎ ‎that if $h$ is a finite nonabelian simple group such that‎ ‎$text{cd}(g) =text{cd}(h)$‎, ‎then $gcong h times a$‎, ‎where $a$ is‎ ‎an abelian group‎. ‎in this paper‎, ‎we verify the conjecture for‎ ${f_4(2)}.$‎

متن کامل

Combinatorics of least-squares trees.

A recurring theme in the least-squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least-squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor...

متن کامل

Graceful Tree Conjecture for Infinite Trees

One of the most famous open problems in graph theory is the Graceful Tree Conjecture, which states that every finite tree has a graceful labeling. In this paper, we define graceful labelings for countably infinite graphs, and state and verify a Graceful Tree Conjecture for countably infinite trees.

متن کامل

The self-minor conjecture for infinite trees

We prove Seymour’s self-minor conjecture for infinite trees.

متن کامل

on huppert's conjecture for $f_4(2)$

let $g$ be a finite group and let $text{cd}(g)$ be the set of all‎ ‎complex irreducible character degrees of $g$‎. ‎b‎. ‎huppert conjectured‎ ‎that if $h$ is a finite nonabelian simple group such that‎ ‎$text{cd}(g) =text{cd}(h)$‎, ‎then $gcong h times a$‎, ‎where $a$ is‎ ‎an abelian group‎. ‎in this paper‎, ‎we verify the conjecture for‎ ‎${f_4(2)}.$‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2019

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2018.10.003